Egy n elemű halmaz k elemű részhalmazainak számát (ismétlés nélküli kombinációinak számát) jelölhetjük a következő szimbólummal: Más úton (az ismétléses permutációk irányából) közelítve a problémához, megkaphatjuk, hogy a n elemű halmaz k-ad osztályú ismétlés nélküli kombinációinak száma: Ezek alapján sok további, a binomiális együtthatókra vonatkozó tétel igazolható a fentieknek megfelelő kombinatorikus (1) és algebrai (2) eszközökkel. Néhány olyan állítást mutatunk, amelyek bizonyításakor érdemes próbálkozni az említett módszerek mindegyikével.
A következőkben a bizonyításokhoz adunk némi segítséget.
- Bármely halmaznak egyetlen 0 elemű részhalmaza van, az üreshalmaz. Egy n elemű halmaznak egyetlen n elemű részhalmaz van, önmaga.
- Bármely adott részhalmaz egyértelműen meghatároz egy olyan másik részhalmazt, aminek azok és csak azok az elemek az elemei, amelyek nem elemei az adott részhalmaznak.
- Egy n+1 elemű halmaz k+1 elemű részhalmazai két osztályba sorolhatók. Az egyiknek egy adott elemet tartalmazó részhalmazok az elemei, a másiknak azok, amelyek nem tartalmazzák az adott elemet.
- A feladat a KöMaL-ban F. 2526. szám alatt szerepelt.
- A vizsgált n+m elemű halmazt bontsuk fel egy n és egy m elemű részhalmazba. A k elemű részhalmazokat osztályba sorolhatjuk aszerint, hogy hány elemet tartalmaznak az n elemű részhalmazból.
A következő
állítások igazolását önálló munkának szánjuk.