Néhány évvel ezelőtt, amikor általános iskolások voltunk, a kör kerületét megadó képlethez a következő kísérleti úton jutottunk el a matematikaórán:
Tanárnőnk több hengert hozott magával az órára. Tolómérő segítségével mindegyiknek megmértük az átmérőjét, majd a palástjukra tekert cérna alkalmazásával megmértük a kerületüket is. A kapott eredményeket táblázatba foglaltuk, és megállapítottuk, hogy a kör kerülete és átmérője egyenesen arányos egymással, az összetartozó kerület és átmérő állandó hányadosát PI-nek neveztük el.
A félreértések elkerülése végett hangsúlyozzuk, hogy ezt a most vázolt utat nagyon jónak gondoljuk. Fontosnak érezzük, hogy általános iskolás korban (és még jóval később is) a diákok sok közvetlen tapasztalás útján jussanak el az absztrakt matematikai fogalmakhoz, tételekhez, összefüggésekhez.
Annak, hogy most egy másik utat is vázolunk, két oka van:
Módszertani alternatívák felmutatása, azok alkalmazása érdekesebbé, változatosabbá teheti a matematika oktatását.
Talán igaz az is, hogy ha a gyerekek elég korán, szellemi szintjüknek megfelelően megismerkednek a közelítéses módszerekkel, akkor későbbi tanulmányaik során természetesebben fogják fogadni azokat.
Nézzük az alternatívát!
Miliméterpapírra rajzolva kiadjuk a tanulóknak a következő ábrát, amelyen egy egységnyi sugarú negyedkör látható.
Kérdés, hogy mekkora a pirossal jelzett AB szakasz hosszának a négyszerese.
Természetes reakcióként a gyerekek vonalzóval megmérik az AB szakasz hosszát, egy szorzás után mondják a kért számot. (Elképzelhető, hogy a nem túl pontos mérések miatt különböző eredmények adódnak, akkor vetessük a számtani közepüket, és máris koncentráltunk a statisztikával.) Ezután az elfogadott eredményt jegyezzük fel!
Lépjünk tovább! Felezzük meg az OA szakaszt, a felezésponton keresztül húzzunk párhuzamost az OB szakasszal, és a következő ábrához jutunk: A feladat az, hogy az AX1 és az X1B szakaszok hossza összegének a négyszeresét adjuk meg.
Megint mérés következik, majd összeadás, szorzás, és a diákok kiabálják az általuk kapott számokat. Vegyük azok átlagát, és jegyezzük fel az eredményt!
Harmadoljuk most az OA szakaszt, és az előzőekben már vázolt módon adjuk meg a következő ábrán pirossal jelölt szakaszok hosszai összegének a négyszeresét!
Ha szükségesnek érezzük, akkor további méréseket végeztethetünk, majd elkészíthetjük a következő táblázatot, amelyben az eredményeinket rögzítettük.
Felvethetjük azt a kérdést, hogy ez az eljárás meddig folytatható. Elképzelhető, hogy ezen a ponton vita bontakozik ki a gyerekek között. A különböző nézetek ütköztetése előre viheti a gondolatmenetet.
Számítógéppel vagy programozható zsebszámológéppel modellezve a problémát, sok egymást követő esetet megnézhetünk még, majd a tanítványaink véleménye után tudakozódhatunk.
Az valószínűleg megállapítják majd, hogy a beosztások számának növelésével az eredmények nőnek. Többen rájöhetnek arra is, hogy ez a növekedés lassul.
Megkérdezhetjük ezután, hogy az eredményeink akármeddig nőhetnek-e. Biztos lesz olyan gyerek, aki rájön arra, hogy az egységnyi sugarú kör kerületénél mindig kisebb számot kapunk. Ekkor jöhet az a kérdés, hogy mennyire közelíthetjük meg ezt a kerületet? Talán kihozhatjuk tanítványainkból az "akármeddig" választ.
Házi feladatként a gyerekek azt kaphatják, hogy - csoportokra bontva - különböző sugarak esetében ismételjék meg az órai eljárás-sorozatot.
A következő órán a kapott eredményeket vizsgálva megállapítjuk, hogy a kerület és a sugár egyenesen arányos egymással, és a 0,5 sugarú kör kerületét - a szokásokra hivatkozva - PI-vel jelöljük.
A "vájt szemű" olvasó láthatja, hogy ebben a tárgyalásmódban, intuitív módon komoly matematikai fogalmak (sorozat, monotonitás, korlátosság, konvergencia, . . .) kerülnek elő. Talán remélhetjük, hogy a későbbiekben e fogalmak definíciójának pontos megadásakor majd építhetünk az itt szerzett tapasztalatokra.
Megjegyzés:
Ez a cikk nem más, mint a szerző elgondolásainak rögzítése. A benne leírtak nincsenek tanítási tapasztalattal alátámasztva.
Ha a későbbiekben valaki megpróbálkozik a kör kerületének ilyen módon történő tanításával, tapasztalatait küldje el nekünk, hogy közölhessük.